Does The Apple Fall Far From The Tree?

In utero exposure to persistent organic pollutants alters sperm miRNA expression across multiple, unexposed generations.

P.M. Herst¹, M. Lessard¹, P.L. Charest¹, M. Vallée², A. Droit², J.M. Trasler⁵, S. Kimmins³, A.J. MacFarlane⁴, M. Dalvai¹, and J.L. Bailey¹

¹Laboratory of Sperm Function and Toxicology, Department of Animal Sciences, Faculty of Agriculture and Nutrition, ²Computational Biology Laboratory Research Centre, Faculty of Medicine, Université Laval Quebec City. ³ Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal. ⁴Nutrition Research Division, Health Canada, Ottawa. ⁵Departments of Pediatrics, McGill University, Montreal Children's Hospital, McGill University Health Centre Research Institute, Montreal, Canada.

Introduction

reports indicate that the prenatal Numerous environment can affect the parental germline and influence future generations. Our laboratory has used persistent organic pollutants (POPs) to show toxicant-induced disorders are transmitted from offspring over multiple generations father to coincident with alternations in sperm methylation, paternally-mediated suggesting epigenetic inheritance. However, the role of other epigenetic marks and the effect on his early embryo offspring have not yet been investigated.

Results

POPs alter sperm miRNA expression

POPs POPs+FA 499 sig. DE 491 sig. DE 53% 70%/ 2% 496 sig. DE 513 sig. DE **F2** 82% 87% 546 sig. DE 545 sig. DE 050/

Figure 3. In utero exposure to POPs and POPs+FA display altered miRNA expression profiles in F1-F4. Pie charts illustrating proportions of the differentially expressed (≥1.5 fold change \leq -1.5) and unchanged (<1.5 fold change >-1.5) miRNAs in POPs (blue) or POPs+FA (orange) compared to CTRL sperm. A total of 747 miRNAs were identified in the sperm of rats from the CTRL, POPs, FA and POPs+FA lineages in F1-F4 generations. Among the 747 identified miRNAs, ~ 65%-73% of miRNAs were expressed > 10 counts in F1-F4. For the F1 generation, in utero

Results

Hypotheses

A. Prenatal paternal exposure to POPs alters sperm miRNA expression in sperm and the sperm of his offspring

B. POPs-induced epigenetic dysregulation of miRNA expression is reduced or prevented by nutritional folic acid (FA).

Experimental set-up

F0 founder dams were exposed to POPs, 3x a week, 5 weeks before gestation and until parturition. FA diets were provided ad libitum. After 9 weeks, all F0 founder dams and subsequent generations received 1X ad libitum.

F1

F3

220

200

හී140

80

60

20

Q

5,0

⊕ 4,0 ₽3,0

POPs

exposure to POPs dysregulated the expression of 47% of the miRNAs at least 1.5-fold compared to CTRL. POPs+ FA supplementation caused fewer, 30%, miRNAs to be dysregulated in F1, indicating that maternal consumption of 3X FA diets protected her offspring's sperm epigenome from toxicantinduced perturbation.

Unchanged Down-regulated Up-regulated

GO-term of altered miRNAs by POPs & POPs+FA

Figure 4. Gene ontology and pathway analysis based on validated miRNA-targeted genes for POPs (blue) and POPs+FA (orange). Top 10 significant (P < 0.05) GOs and KEGG enriched pathways predicted by dysregulated miRNAs in F1-F4 are presented. Compared to POPs, POPs+FA affected miRNAs alter less genes involved in sex differentiation and gonad development F1 and none in F2-F4.

Rno-mir-32-5p	BCL2L11, BMPR2, CCNE2, CDKN1A, CDKN1C, ENPP6, FBXW7, IKZF1, ITGA5, ITGB3, MAP2K4, MAPRE1, MYLIP, PTEN, ZEB2	1.56	4.00	1.61	
Rno-mir-678		-1.96	-1.59	-1.77	
Rno-mir-3586-5p	BCL6, GRM3	-2.89	-1.60	-1.88	-1.50
Rno-mir-99a-3p		-2.91	-1.69	-1.62	
			Fold	Change	
miRNA	Experimentally validated mRNA targets	F1	F2	F3	F4
Rno-mir-32-5p	BCL2L11, BMPR2, CCNE2, CDKN1A, CDKN1C, ENPP6, FBXW7, IKZF1, ITGA5, ITGB3, MAP2K4, MAPRE1, MYLIP, PTEN, ZEB2	1.70	1.64	1.57	
Rno-mir-129-5p	AGO3, BMPR2, SOX4, TNPO1, TP53INP1	-1.99	-1.91	-2.01	1.52
Rno-mir-3586-5p	BCL6, GRM3	-2.38	-1.50	-1.76	
Rno-mir-329-5p		-1.65	-1.57	-1.56	
Rno-mir-451-5p	ABCB1, MIF	1.99	-1.52	1.53	

Figure 7. In utero exposure to both POPs and POPs+FA affects sperm miRNA expression transgenerationally (F1-F4). (a) Venn diagram depicting the overlap of differentially expressed miRNAs (\geq 1.5 fold change \leq -1.5, >10 reads) due to POPs between F1-F4. (b) Venn diagram depicting the overlap of differentially expressed miRNAs (\geq 1.5 fold change \leq -1.5, >10 reads) due to POPs+FA between F1-F4. (c) Transgenerational miRNAs and correlating fold change from F1-F4 due to POPs. (d) Transgenerational miRNAs and correlating fold change from F1-F4 due to POPs+FA.

POPs+FA counteracts POPs effect on sperm miRNA

Methods

Total miRNA extraction using mirVana[™] miRNA Isolation Kit

Figure 5. Combining FA with POPs counteracts the effect of POPs on sperm miRNA expression. Venn diagrams comparing the number of differentially expressed (≥1.5 fold change ≤-1.5, >10 reads) between treatments with respect to controls in generation F1-F4.

Figure 6. The expression of POPs' specific miRNAs is brought POPs+FA towards control status (<1.5 fold change >-1.5) by POPs+FA in F1-F4. Consistent with our hypothesis, we repeatedly observed shifts in dysregulated miRNA fold-changes due to POPs+FA in F1-F4 generations. In F1, rno-miR-125a-3p, rno-miR-344a-5p, rno-miR-136-5p and rno-miR-3551-3p are down-regulated due

Figure 4. Validation of miRNA sequencing data using real-time PCR. Total RNA was extracted from CTRL, POPs and POPs+FA sperm. The expression of miRNAs relative to endogenous control RNA was determined by real-time PCR. The results are expressed as a fold change of POPs or POPs+FA to CTRL. Data are presented as means ± S.D. from 3-5 rats, each assay performed in triplicate.

Conclusion

expression is altered miRNA inter- and Sperm transgenerationally due to prenatal POPs & POPs+FA exposure. Data indicate a possible protective effect of dietary FA supplementation against POPs.

To obtain a complete overview of multigenerational epigenetic changes, we will investigate the impact of *in utero* exposure to POPs and POPs+FA on the two-cell transcriptome

